webnovel
The page numbers of a novel were arranged with 2871 numbers. How many pages were there in this novel?

The page numbers of a novel were arranged with 2871 numbers. How many pages were there in this novel?

2024-09-19 23:58
1 answer

Let's say this novel has x pages. Since the page number used 2871 numbers, the following page numbers can be listed: 2 3 4 2871 The page number of each page was composed of numbers, and each number appeared in the previous number of the page number, and the number of times each number appeared was not repeated. Therefore, the arrangement of the numbers on each page was as follows: 2 × 1 + 3 × 1 + 4 × 1 + + 2870 × 1 + 2871 × 1 = 2871 × (2 + 1 + 4 + + 1) = 2871 × n where n is the number of times the number appears in the page number. Therefore, this novel has a total of x pages. According to the above calculation, we can get: x = 2871 × n Substituting x into the above formula gives: x = 2871 × n × (2 + 1 + 4 + + 1) / 2 In the above formula, n × (2 + 1 + 4 + + 1) is the sum of the number of times the number appears in the page number divided by 2 is the average number of times the number appears in the page number. The above formula was simplified to: x = 2871 × n × (n + 1) / 2 Since n is an integral number, x must be a multiple of 2871. At the same time, because each number in the page number does not repeat, n must be an odd number. Therefore, this novel had a total of 2871 pages.

Is this destiny?

Is this destiny?

Sarah Hill is an introvert who does not want to attract attention. Other than mad coding skills, Sarah knows how to throw a punch. She believes that her biggest problem is the existence of the hacker Omega and her world flips upside-down when the most popular guy on campus approaches her. What does he want? Why her? (Ah, Sarah, that is only the beginning.) JoAnna Hill easily makes friends with her bubbly personality. Some call her a mad scientist, but she prefers ‘Dr. Hill’, because that is what she is. JoAnna is an excellent markswoman who can snipe out any target and she is wondering if her prince charming will ever come. Sophia Hill is the voice of reason, their pillar of support. She is a confident CEO who knows how to get what she wants. Sophia’s degree in law combined with amazing capabilities to analyze the situation and plan ahead make her the perfect strategist (to achieve a goal without ending up in jail). This is a story of three Hill sisters who are navigating through challenges while they uncover the complicated story behind their maternal side of the family. And their father is not a simple man either. Every sister is different, and so are their relationships. They all have in common: trust and belief that if they work together, anything is possible. Mature content! 18+ ***SPOILER? - START *** The story starts with a focus on the youngest sister (Sarah). After about 100 chapters, the oldest sister (Sophia) gets in the romantic spotlight. JoAnna finds herself pulled into romance last, at about 200 chapter mark. ***SPOILER? - END *** Excerpt from the novel... "Do you believe in destiny?", Sarah broke the silence. "Destiny?" Aiden didn't expect such a question. "Yes. The thing that is meant to happen, and there is nothing you can do to prevent it. And when it does happen, everything feels right." "Why would you ask me such a thing?" "Until a few weeks ago I would say that there is no such thing as destiny. That we are all masters of our lives and that everything depends on our actions, or lack of it. But I can't help but wonder: why did I not push you away? ... Why does it feel like everything will be OK as long as we are together? ... You are a piece of me that I never knew was missing. Is this destiny?" "Mmm... if that is destiny, then I approve it.", Aiden lightly kissed Sarah's shoulder and rested his chin on it. --- 1st WARNING!!! Contains descriptions of intimate scenes. If you are not comfortable with that, don’t read it! --- 2nd WARNING!!! This is my first novel! :) --- ***** I own the cover. ***** Check out my other novels: * "Accident Prone" * "Amara - Reunion" * "The Alpha's Bride" * "The Supreme Alpha"
Urban
2127 Chs

There were 297 numbers on the page number of a novel. How many pages were there in this novel?

This problem could be solved through mathematical methods. Assuming that the novel has $n$pages, then each page has $p$numbers, where $1'le p 'le n$. According to the page number of the question, a total of $297$numbers can be listed as follows: $$n\times p + n - 1 = 297$$ To simplify it: $$n(p+1) = 297 - 1 = 296$$ Since $n$is an integral,$p+1$must be a multiple of $296$. At the same time, since $1'le p 'le n$,$p+1$must be a multiple of $12' ldotsn'$. Therefore, the following restrictions can be obtained: $$p+1> text {is a multiple of $1$but not a multiple of $2$} p+1> text {is a multiple of $2$but not a multiple of $3$}& ldots p+1> text {is a multiple of $n$but not a multiple of $n-1 $}$$ According to these constraints, the value range of $p+1$can be obtained: $$135791113\ldotsn$$ Substituting these values into the equation $n(p+1) = 297 - 1$gives: $$n(n+1) = 297 \times (n+1)$$ To simplify it: $$n^2 + n - 296 = 0$$ By solving this second order equation, one could get: $$n = \frac{296\pm\sqrt{296^2-4\times1\times296}}{2\times1} = \frac{296\pm294}{2}$$ Since $n$is an integral number,$n$can only take two values: $$n = 44 n = 43$$ So this novel has a total of $44$or $43$pages.

1 answer
2024-09-08 20:59

There were 297 numbers on the page number of a novel. How many pages were there in this novel?

Assuming that this novel has $n$pages and each page has $x$numbers, the page number can be expressed as: ``` 1 2 3 n ``` There are a total of $n$pages, so the page number has a total of $n$numbers. However, the page number has a total of $297$, so you need to find a positive integral number between $n$and $297$so that every number in $n$can divide $297$. We can enum every possible value of $n$and check if it can divide $297$. We can use the following algorithm to solve this problem: 1 takes the first $20$of $n$as the approximate value of $n$. 2 Check if $n$can divide $297$. If not, go back to step 1. 3 If $n$can divide $297$, then $n$is the answer. 4 returns $n$. After calculating, we found that when $n=1000$, there are $x=123$numbers on each page that meet the criteria. Therefore, this novel had a total of $1000$pages.

1 answer
2025-03-13 04:04

The page number of a book required 1995 numbers. How many pages were there?

This was a rather special page number that used 1995 numbers. Usually, the page number of a book was composed of the number of pages and the number of pages. The number of pages was only composed of 0 to 9, while the number of pages was composed of 1 to 999. Therefore, if we assume that the page number of this book is composed of page numbers, then its page number range should be 1 to 999, a total of 9990 pages. However, due to the use of 1995 numbers, the book actually had 9991 pages.

1 answer
2024-09-11 06:45

There were 222 numbers for the pages of a book. How many pages were there in this storybook?

If a book uses 222 numbers for page numbering, then these numbers must correspond to the number of pages on the page. We can use these numbers to represent the number of pages in the book and then calculate the total number of pages. First, we divide each number by 10 and the remainder is the corresponding page number on the page. For example, if the number on the page number is 20 and the number on the page number is 101, then we can get: 101 ÷ 10 = 11 11 ÷ 10 = 11 11 ÷ 10 = 011 011 ÷ 10 = 0011 0011 ÷ 10 = 00011 By analogy, we can get the relationship between each number and the corresponding page number on the page. Based on this relationship, we can calculate the total number of pages in the book as: 222 × (the number on the page number/the corresponding page number on the page number) Substituting 222 and the corresponding page number on the page number into the formula, you can get: 222 × (101 ÷ 20) = 1110 Therefore, this book had a total of 1110 pages.

1 answer
2025-03-09 06:59

If there was a 1000-page book and 40 pages were torn out, could the sum of all the page numbers of these 40 pages be 2021?

This question involves some calculations and logical reasoning. I can try to give a reasonable answer. Assuming that each page of the 1000-page book has a page number, the sum of all the page numbers on the 40 pages can be expressed as: 40 sheets x total page number of 40 sheets = 40 x 1000 = 40000 page numbers Now we add up the 40000 pages: 40000 pages + 1 page = 40101 pages Please note that we are assuming that each page has a unique page number. If some of these 40 sheets of paper do not have corresponding page numbers, then these page numbers will appear on other sheets of paper, and their sum may be different. So if we can't determine the exact order and number of these pages, we can't be sure if the sum of these pages will equal 2021. But if we assume that each page has a unique page number and that these page numbers are arranged in order, then we can calculate the sum of all the page numbers in these 40 pages: 40 sheets x total page number of 40 sheets = 40 x 1000 = 40000 page numbers The sum of all page numbers = 40000 page numbers + 1 page = 40101 page numbers Therefore, if every page has a unique page number and these page numbers are arranged in order, then the sum of all the page numbers in these 40 pages cannot be equal to 2021.

1 answer
2024-09-16 00:26

A book had 200 pages. How many numbers were needed to number the pages?

A book has 200 pages, and if you want to use numbers to number the pages, you'll usually start with 1 and increment each page by one number. Therefore, the page number could be prefixed with 1, 2, or 3199, and the page number could be postfixed with 200. For example, if the page number of a book is "123456","1" represents the first page,"2" represents the second page, and so on,"3" represents the third page,"4" represents the fourth page,"5" represents the fifth page,"6" represents the sixth page,"7" represents the seventh page,"8" represents the eighth page,"9" represents the ninth page,"10" represents the tenth page,"11" represents the eleventh page,"12" represents the twelfth page,"13" represents the thirteenth page,"14" represents the fourteenth page," 15"" 16 " represents the 15th page," 17 " represents the 17th page," 18 " represents the 18th page," 19 " represents the 19th page," 20 " represents the 20th page, and add the page number with the " 0 ".

1 answer
2024-09-11 15:35

To paginate a novel, a total of 3005 signature numbers were used. How many pages were there in this book?

It was impossible to determine how many pages there were in the book because the number of signatures on the page number did not necessarily represent the number of pages. For example, a book might have 200 pages but there are 3005 signatures on the page number, which means that the book has a total of 3005 pages. The other possibility is that the book may have fewer pages, such as only 150 pages, but there are 3005 signatures on the page number, which means that the book has a total of 3005 pages. Therefore, we need more information to determine the number of pages in the book, such as whether the author has written the correct number of pages, and so on.

1 answer
2025-03-10 11:30

A book had 200 pages, so how many numbers were needed?

The numbers needed to paginate a book with 200 pages are: 200 pages/number per page (for example, 1 page = 1 number) = 100 numbers Therefore, a book with 200 pages would need 100 numbers to number the pages.

1 answer
2024-09-11 15:37

5. How many numbers do you need to print the pages of a 200-page book?

The number of pages needed to print a 200-page book is: 200 pages/page (page) = 200/15 = 16 Therefore, the number of page numbers required to print a 200-page book was 16.

1 answer
2024-09-18 14:25
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z